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Abstract
The closed algebraic expressions of the determinants of some multivariate
(multilevel) Vandermonde matrices and the associated Toeplitz/Karle–
Hauptman matrices are worked out. The formula can usefully be applied
to evaluate the determinant of the Karle–Hauptman matrix generated by a
principal basic set of reflections, the knowledge of which determines the full
diffraction pattern of an ideal crystal.

PACS numbers: 02.10.Ud, 02.10.Yn, 61.12.Bt, 05.45.Tp

1. Introduction

The explicit expression of the Vandermonde determinant has long been known. Recently,
there has been interest in evaluating different generalizations of the Vandermonde determinant,
including the multivariate (multilevel) case [1, 2], since these matrices and their determinants
are useful in many fields, such as crystallography [3–10] or signal theory [2, 11, 12]. The reason
why these fields are interested in Vandermonde matrices depends on the fact that the relevant
basic problem can be formulated in the one-dimensional (1D) case as follows: to determine the
quantities νj s and xj s (with 0 � xj < 1) defining the distribution ρ(x) ≡ ∑N

j=1 νj δ(x − xj ),

knowing the latter’s Fourier transform Fh = ∑N
j=1 νj ξj

h (with ξj ≡ ei2πxj ) at an appropriate
set of integers h. It is evident that with h = 0, 1, . . . , N − 1 we have a system of N linear
equations characterized by a Vandermonde matrix. When the problem is generalized to the
more realistic case of a higher dimensional space, i.e. D � 2, the involved matrices become
multilevel Vandermonde matrices denoted by (V) in the following.

3 On leave from Consiglio Nazionale delle Ricerche, Istituto di Cristallografia (CNR-IC), Via Amendola 122/O,
I-70126 Bari, Italy.
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Associated with these matrices there are Toeplitz matrices [13, 1], known as Karle–
Hauptman matrices in crystallography [3, 4] and having the following structure (D) =
(V)†(�)(V) (see section 3 for precise definition) with (�) a diagonal matrix.

The study of these matrices of the kind found in x-ray or neutron scattering from an ideal
crystal has helped us to find that their determinants have a simple closed algebraic expression
that will be reported here.

2. Generalized multilevel Vandermonde matrix

In this section, we define a generalized D-level Vandermonde matrix in the context of Fourier
transforms of weighted discrete sets of points in a D-dimensional space. In the first part of
this section we evaluate its determinant in the case D = 2; and in the second part, we treat the
cases D > 2 (section 2.2) that only involve more bookkeeping.

Take a set SD of N distinct points in [0, 1)D . In general, some points may have some but
not all of their coordinates equal. Then we enumerate the points in SD by the different values
of the first (leading) coordinate, then by the different values of the second (trailing) coordinate
and so on, employing D indices.

2.1. Case D = 2

For D = 2, we have

S2 ≡ {rr,s ≡ (xr , yr,s) | r = 1, . . . ,M, s = 1, . . . , mr}. (1)

Here, mr counts the points which share the same rth value of the first (leading) coordinate.
Clearly, 1 � mr � N whatever r, and

∑M
r=1 mr = N . Further, in labelling the different xrs,

we choose label r in such a way that

m1 � m2 � · · · � mM. (2)

It is observed that set S2 can bijectively be mapped onto subset I2

I2 ≡ {k ≡ (h, k) | h = 0, . . . ,M − 1, k = 0, . . . , mh+1 − 1} (3)

of the Z
2 lattice by putting h = r − 1 and k = s − 1. We remark that the labelling used in (1)

depends on the order in which the coordinates are considered. Therefore there are D! possible
different realizations but, in the following, we shall confine ourselves to the one defined above.

Take now a set of N orthonormal vectors |rr,s〉 ≡ |xr, yr,s〉 (rr,s ∈ S2) forming an
orthonormal complete basis of the N-dimensional Hilbert space H. We consider the vectors
|k〉 ≡ |(h, k)〉, with k ∈ Z

2, defined as

|k〉 ≡
M∑

r=1

mr∑
s=1

e−i2πk·rr,s |rr,s〉 ≡
M∑

r=1

mr∑
s=1

e−i2πhxr e−i2πkyr,s |xr, yr,s〉. (4)

Equivalently, setting

ξr ≡ e−i2πxr and ηr,s ≡ e−i2πyr,s (5)

we have

|k〉 =
M∑

r=1

mr∑
s=1

ξh
r ηk

r,s |xr, yr,s〉. (6)

These vectors form a lattice of vectors belonging to H. We restrict now ourselves to the set
of the N vectors |k〉 = |(h, k)〉 with k ∈ I2. Then (6) describes a linear transformation



The determinants of some multilevel Vandermonde and Toeplitz matrices 9733

between two sets of N vectors of H that is represented by matrix (V) with elements
V(r,s),(h,k) ≡ 〈rr,s |k〉 = ξh

r ηk
r,s . The considered N vectors |k〉 are linearly independent iff

(V) is non-singular. We write (V) in the factored-block form

(V) =

∣∣∣∣∣∣∣∣∣∣

ξ 0
1 (B1,1) ξ 1

1 (B1,2) . . . ξM−1
1 (B1,M)

ξ 0
2 (B2,1) ξ 1

2 (B2,2) . . . ξM−1
2 (B2,M)

. . .

ξ 0
M(BM,1) ξ 1

M(BM,2) . . . ξM−1
M (BM,M)

∣∣∣∣∣∣∣∣∣∣
(7)

where the generic (Br,r ′) element is the mr × mr ′ matrix defined as

(Br,r ′) ≡

∣∣∣∣∣∣∣∣∣∣∣

η0
r,1 η1

r,1 . . . η
mr′ −1
r,1

η0
r,2 η1

r,2 . . . η
mr′ −1
r,2

. . .

η0
r,mr

η1
r,mr

. . . η
mr′ −1
r,mr

∣∣∣∣∣∣∣∣∣∣∣
(8)

and ξ r ′−1
r (Br,r ′) denotes the mr × mr ′ matrix obtained by entrywise (element by element)

multiplication of matrix (Br,r ′) by scalar ξ r ′−1
r . This identifies (V) as a two-level Vandermonde

matrix. Clearly, for dimension D > 2, we shall have a D-level block structure. Diagonal
blocks (Br,r ) are square Vandermonde matrices and

det(Br,r ) =
∏

1�s ′<s�mr

(ηr,s − ηr,s ′). (9)

To facilitate the reader in understanding the way to form matrix (V), we have included a small
example in the appendix.

We now show that the analytical expression of the determinant of (V) is also remarkably
simple. To this aim, consider the following four points:

(i) The determinant of (V) is a homogeneous polynomial in variables {ξ} and {η}. In fact,
det(V) is a sum of terms all having the degrees Q and P in the variables {η} and {ξ},
respectively, where

Q =
M−1∑
h=0

mh+1−1∑
k=0

k = 1

2

(
−N +

M−1∑
h=0

m2
h+1

)
(10)

P =
M−1∑
h=0

h mh+1. (11)

If, whatever r, ηr,s = ηr,s ′ with s �= s ′, two rows of (V) are equal and the determinant
must have a zero. This happens for any (s, s ′) pair and for any r. Hence, using (9), it
must result

det(V) = R({ξ})
M∏

r=1

det(Br,r ). (12)

It is noted that the factor R cannot depend on variables {η} because the total degree of the
expression inside the square brackets is Q. Thus, R({ξ}) is a polynomial of degree P in
the {ξ} variables.
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(ii) Recall now the Laplace expansion of determinants [14, 15]. Evaluate det(V) by
considering the (m1 × m1) minors contained in the first m1 rows of (V) corresponding
to the first row of the matrix reported on the right-hand side of (7). Each of these
minors, after factorizing the appropriate powers of ξ common to each column, is a
Vandermonde-like matrix having the same exponent sequence in all its rows, the sth
of these consisting only powers of η1,s . The determinants of the minors that do not
contain the full set of exponents 0, 1, . . . , m1 − 1 will be 0. Consider now the only
minors with nonzero determinant. Recalling the ordering (2), we can say that only
minors containing the leftmost m2 + 1, . . . , m1th columns of (V) and, thus, of (B1,1) will
contain exponents m2, . . . , m1 −1 and could therefore be non-singular. Thus, the relevant
(N −m1)× (N −m1) complementary minors will never contain the (m2 +1) th, . . . , m1th
column of (V).

(iii) Choose now r such that 1 < r � M . Assume that ξ1 = ξr . We have m1 � mr . We
can evaluate det(V) by considering all the minors contained in a rectangular submatrix
built by taking the first m1 rows—all and only those having a power of ξ1 as factor—and
all the mr rows which have a power of ξr as factor. These correspond to the two block
rows B1,1, . . . , B1,M and Br,1, . . . , Br,M superimposed. Having assumed that ξ1 = ξr ,
each column of one of these minors factorizes ξh

1 with h in 0, . . . , M − 1 depending on
the considered column. Thus, we are left with an (m1 + mr) × (m1 + mr) Vandermonde
matrix whose elements are ηk′

1,s ′ or ηk
r,s with 1 � s ′ � m1 and 1 � s � mr , while k′ and

k belong to 0, . . . , m1 − 1. The rank of this matrix can be at most m1 and, therefore, its
determinant will have a zero of order at least equal to mr = min(m1,mr). Hence, det(V)

evaluated by this procedure will have a zero of order at least equal to mr owing to the
hypothesis ξ1 = ξr .

(iv) Assume now that ξ2 = ξr ′ for a particular r ′ such that 2 < r ′ � M . Before repeating the
reasoning made in the case ξ1 = ξr , we imagine of having developed det(V) with respect
to the minors contained in the first m1 rows. As noted above, there is no need to consider
complementary minors containing the columns with exponents m2, . . . , m1 − 1. Each of
these complementary minors can be developed by considering its (m2 + mr ′)× (m2 + mr ′)

minors contained in the two blocks rows B2,1, . . . , B2,M and Br ′,1, . . . , Br ′,M , presenting
the factors ξ2 and ξr ′ , respectively. By the same reasoning made above for the case ξ1 = ξr ,
one concludes that each (m2 + mr ′) × (m2 + mr ′) minor has a rank at most equal to m2

and that det(V) has a zero at least of order mr ′ = min(m2,mr ′) when ξ2 = ξr ′ . Thus, the
zero of det(V) is at least of the order min(mr,mr ′) when ξr = ξr ′ . Due to the ordering
(2), whenever r > r ′ we have that min(mr,mr ′) = mr = size(Br,r ). Thereafter, one can
write that

det(V) = R1({η})
∏

1�r ′<r�M

(ξr − ξr ′)size(Br,r ). (13)

The degree in the variables {ξ} in the above product is equal to P, so that R1 is a polynomial
of the variables {η} only. Thus, combining equation (12) with (13), one finds that

R1({η}) = R0

M∏
r=1

det(Br,r ), (14)

where R0 is a simple constant. Comparing the ‘diagonal’ term
∏M

r=1

(
ξr

(r−1)mr
∏mr

s=1 ηs−1
r,s

)
resulting from the calculation of det(V), starting from the explicit expression of (V), with the
corresponding term obtained developing the products present in (13) combined with (14), one



The determinants of some multilevel Vandermonde and Toeplitz matrices 9735

finds that R0 = 1. Hence, the remarkably simple expression of the determinant of matrix (V)

reads

det(V) =

 ∏

1�r ′<r�M

(ξr − ξr ′)size(Br,r )


 (

M∏
r=1

det(Br,r )

)
. (15)

2.2. Case D > 2

In the case D = 3, the set S3 of the position vectors will be written as

S3 ≡ {rr,s,t ≡ (xr , yr,s , zr,s,t ) | r = 1, . . . ,M, s = 1, . . . ,Mr, t = 1, . . . , mr,s} (16)

where Mr counts the different values of the first subleading coordinate of the points sharing the
same rth value of the leading coordinate while mr,s counts the number of the points of S3 that
have as second coordinate the sth of the possible values when its first coordinate is the rth of the
possible values. Clearly,

∑Mr

s=1 mr,s = mr where mr , similarly to definition (1), is the number
of the points of S3 that share the rth leading coordinate so as to have mr � Mr and, as before,
N = ∑M

r=1 mr . Labels r and s are now chosen in such a way that M1 � M2 � · · · � MM and
mr,1 � mr,2 � · · · � mr,Mr

. Set S3 can be bijectively mapped onto subset I3

I3 ≡ {k ≡ (h, k, l) | h = 0, . . . , M − 1, k = 0, . . . , Mh+1 − 1, l = 0, . . . , mh+1,k+1 − 1}
(17)

of the Z
3 lattice. The vectors |k〉, with k ∈ Z

3, are now defined as

|k〉 ≡ |(h, k, l)〉 ≡
M∑

r=1

Mr∑
s=1

mr,s∑
t=1

e−i2πk·rr,s,t |rr,s,t 〉 ≡
M∑

r=1

Mr∑
s=1

mr,s∑
t=1

ξh
r ηk

r,sζ
l
r,s,t |xr, yr,s , zr,s,t 〉,

(18)

where

ξr ≡ e−i2πxr ; ηr,s ≡ e−i2πyr,s ; ζr,s,t ≡ e−i2πzr,s,t . (19)

At the same time, the vectors |rr,s,t 〉 ≡ |xr, yr,s , zr,s,t 〉 form an orthonormal complete basis of
the N-dimensional Hilbert space H. Take now the N vectors |k〉 = |(h, k, l)〉 with k ∈ I3.
The generic element of the 3-level Vandermonde matrix (V), obtained from the sets S3 and
I3, is V(r,s,t),(h,k,l) ≡ 〈rr,s,t |k〉 = ξh

r ηk
r,sζ

l
r,s,t . From these considerations, it appears clear how

sets SD and ID are defined if D > 3.
It is evident that the expression of the determinant of the corresponding Vandermonde

matrix, obtained by SD and the associated ID for the case D > 2, is exactly the same as in (15),
with the proviso that now all the (Br,r ) blocks there present are (D − 1)-level Vandermonde
matrices with (leading) variables ηr,s with s = 1, . . . , size(Br,r ) and sub-blocks (Cr;s,p) which
are again (D − 2)-level Vandermonde matrices in the trailing variables. To be more explicit,
in the case D = 3 one has

(Br,r ) =

∣∣∣∣∣∣∣∣∣∣

η0
r,1(Cr;1,1) η1

r,1(Cr;1,2) . . . η
Mr−1
r,1 (Cr;1,Mr

)

η0
r,2(Cr;2,1) η1

r,2(Cr;2,2) . . . η
Mr−1
r,2 (Cr;2,Mr

)

. . .

η0
r,Mr

(Cr;Mr,1) η1
r,Mr

(Cr;Mr,2) . . . η
Mr−1
r,Mr

(Cr;Mr,Mr
)

∣∣∣∣∣∣∣∣∣∣
(20)
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where the symbol (Cr;s,p) represents the mr,s × mr,p matrix defined as

(Cr;s,p) ≡

∣∣∣∣∣∣∣∣∣∣∣

ζ 0
r,s,1 ζ 1

r,s,1 . . . ζ
mr,p−1
r,s,1

ζ 0
r,s,2 ζ 1

r,s,2 . . . ζ
mr,p−1
r,s,2

. . .

ζ 0
r,s,mr,s

ζ 1
r,s,mr,s

. . . ζ
mr,p−1
r,s,mr,s

∣∣∣∣∣∣∣∣∣∣∣
(21)

and the first index r specifies that sub-blocks (Cr;s,p) refer to matrix (Br,r ). This implies that
the evaluation of the D-level determinant det(V) involves a recursive application of (15) down
to level 1. In fact, to see that (15) holds in general for any level D > 2 we can proceed by
induction assuming that (15) holds at level D − 1 and showing that it still holds at D. For this
aim, it is sufficient to trace back steps (i)–(iv).

3. Evaluation of Karle–Hauptman determinants

To write down the explicit form of a Karle–Hauptman matrix (D), it is convenient to re-index
sets SD and ID by unique indices, denoted as ρ and σ , respectively, both ranging over 1, . . . , N

and preserving the hierarchical order. For D = 2, this means

ρ ≡ ρ(r, s) ≡ s +
r−1∑
p=1

mp; σ ≡ σ(h, k) ≡ k + 1 +
h−1∑
p=0

mp+1. (22)

If D > 2, the expressions are quite similar. The (σ, σ ′) element of (D) is defined as

Dσ,σ ′ ≡
N∑

ρ=1

V†
σ,ρνρVρ,σ ′ =

N∑
ρ=1

νρ exp(i2π(kσ ′ − kσ ) · rρ), σ, σ ′ = 1, . . . , N (23)

where νρ are given complex numbers. Putting (�) ≡ diag{ν1, ν2, . . . , νN }, we can write

(D) ≡ (V)†(�)(V) (24)

that clearly coincides with the Karle–Hauptman matrices defined in [3, 4, 8]. At the same
time, as the (σ, σ ′)th element depends only on the difference kσ ′ − kσ , (D) is a generalized
Toeplitz matrix (for D > 1, a multilevel Toeplitz matrix). (Considering the case D = 1, in
fact, (23) is a classical Toeplitz matrix if kσ ′ = (σ ′ − 1) and kσ = (σ − 1).)

By the results of the previous section and (24) we find that

det(D) = |det(V)|2
N∏

ρ=1

νρ (25)

where det(V) is given by (15). This expression is valid for general complex numbers νρ .
Therefore, it applies to the phase problem [3, 4, 10] both for x-ray and for neutrons, and also
for anomalous scattering. One concludes that det(D) is certainly different from zero if no νρ

is equal to zero and all rρs are distinct.
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Figure 1. Example of an S2 set associated with a set of seven distinct points in a 2D space.

4. Conclusion

We have shown that the algebraic expression of the determinant of the multilevel Vandermonde
matrix generated by the sets SD and ID is obtained by the recursive application of (15).
Similarly, the determinant of the Toeplitz or Karle–Hauptman matrix defined by equations (23)
and (24) is given by (25).

Appendix

Here, we report an example on the construction of a two-level (D = 2) Vandermonde matrix.
Consider a set S2 of N = 7 points in the [0, 1)× [0, 1) square, as shown in figure 1. Choosing
the horizontal (x) as leading coordinate, we have only M = 4 distinct x values. We label the
seven points according to their respective x-degeneracy, ordered as

S2 = {(x1, y1,1), (x1, y1,2), (x1, y1,3), (x2, y2,1), (x2, y2,2), (x3, y3,1), (x4, y4,1)}. (A.1)

This labelling fulfils the condition in (2), as m1 = 3 � m2 = 2 � m3 = 1 � m4 = 1.
Note that only for the last two points, having the same degeneracy, we could have exchanged
labels. Note also that if we had chosen y as leading coordinate, evidently there would be no
degeneracy (M = N = 7; mr = 1, r = 1, . . . , 7) and all labels (yr , xr,1), r = 1, . . . , 7 could
have been arbitrarily assigned to the points.

We also assign now the Fourier space ordered point set as in (3),

I2 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0), (3, 0)}. (A.2)
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Matrix V now is built taking the exponential of 2π i multiplied by the scalar product of the
elements of S2 (in row order) times the elements of I2 (in column order). This gives

(V) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ei2π(y1,1) ei2π(2y1,1) ei2π(x1) ei2π(x1+y1,1) ei2π(2x1) ei2π(3x1)

1 ei2π(y1,2) ei2π(2y1,2) ei2π(x1) ei2π(x1+y1,2) ei2π(2x1) ei2π(3x1)

1 ei2π(y1,3) ei2π(2y1,3) ei2π(x1) ei2π(x1+y1,3) ei2π(2x1) ei2π(3x1)

1 ei2π(y2,1) ei2π(2y2,1) ei2π(x2) ei2π(x2+y2,1) ei2π(2x2) ei2π(3x2)

1 ei2π(y2,2) ei2π(2y2,2) ei2π(x2) ei2π(x2+y2,2) ei2π(2x2) ei2π(3x2)

1 ei2π(y3,1) ei2π(2y3,1) ei2π(x3) ei2π(x3+y3,1) ei2π(2x3) ei2π(3x3)

1 ei2π(y4,1) ei2π(2y4,1) ei2π(x4) ei2π(x4+y4,1) ei2π(2x4) ei2π(3x4)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (A.3)

After passing to variables ξ, η as in (5), with

ξ1 = ei2πx1 , ξ2 = ei2πx2 , . . . ; η1,1 = ei2πy1,1 , η1,2 = ei2πy1,2 , . . . (A.4)

we can write

(V) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ 0
1




η0
1,1 η1

1,1 η2
1,1

η0
1,2 η1

1,2 η2
1,2

η0
1,3 η1

1,3 η2
1,3


 ξ 1

1




η0
1,1 η1

1,1

η0
1,2 η1

1,2

η0
1,3 η1

1,3


 ξ 2

1




η0
1,1

η0
1,2

η0
1,3


 ξ 3

1




η0
1,1

η0
1,2

η0
1,3




ξ 0
2

(
η0

2,1 η1
2,1 η2

2,1

η0
2,2 η1

2,2 η2
2,2

)
ξ 1

2

(
η0

2,1 η1
2,1

η0
2,2 η1

2,2

)
ξ 2

2

(
η0

2,1

η0
2,2

)
ξ 3

2

(
η0

2,1

η0
2,2

)

ξ 0
3

(
η0

3,1 η1
3,1 η2

3,1

)
ξ 1

3

(
η0

3,1 η1
3,1

)
ξ 2

3

(
η0

3,1

)
ξ 3

3

(
η0

3,1

)
ξ 0

4
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(A.5)

where the (Br,r ′) block matrices are evidenced (cf (7)). By (15) immediately follows that

det(V) = (ξ2 − ξ1)
2(ξ3 − ξ1)(ξ4 − ξ1)(ξ3 − ξ2)(ξ4 − ξ2)(ξ4 − ξ3)

× (η1,2 − η1,1)(η1,3 − η1,1)(η1,3 − η1,2)(η2,2 − η2,1). (A.6)
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